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Abstract

In this paper, we develop a framework to measure the credit risk of unlisted infrastructure debt, including

the rst formulation of "distance to default" in infrastructure project nance.

We propose to use the debt service cover ratio (DSCR or the ratio of the rm's free cash ow to its

debt service in a given period), which is routinely collected by project nance lenders, to measure and

benchmark credit risk in infrastructure project nance.

We argue that knowledge of the rst two moments of distribution of the DSCR in project nance are

suf cient to measure and predict the credit risk of individual loans. We show that the distribution of the

DSCR captures asset value and volatility and allows measuring distance to default in project nance. The

distribution of the DSCR also provides an unambiguous default point and can thus be used to build a

mapping of expected default frequencies (EDFs) in project nance.

Once characterised, the distribution of the DSCR allows the computation of an expected value, a condi-

tional probability of default at time t and a conditional probability of emergence from default.

We show that these variables are suf cient to compute loss given default (LGD) and the expression of a

loss density function of project nance loans at each point in the project lifecycle. Thus, the knowledge

of the distribution of the DSCR in project nance allows the calculation of a value-at-risk (VaR) measure

of infrastructure project debt, which can be used, for example, to calibrate a risk module, such as those

used in risk-based prudential frameworks.

We highlight the relevance of our conclusions with an illustrative simulation.

We also conclude that a large sample of observed or simulated project debt cash ows and their respective

DSCR in each period, could be used to derive either a functional form for the distribution of the DSCR or

an empirical mapping of distance to default and probabilities of default in project nance at each point
in the project lifecycle.

Thus, we propose a template to support data collection initiatives and improve the future benchmarking

and transparency of infrastructure investments.

The authors would like to thank NATIXIS for its support of this research. We also thank professor Frank
Fabozzi, Benjamin Sirgue, Julien Michel and Marie Monnier-Consigny, James Wardlaw, Julien Touati,
Robin Burnett, Neil Grif ths-Lambeth, Trevor Lewis,William Streeter, and the participants of the OECD/APEC
Seminar on Institutional Investment in infrastructure (2013) for useful comments.

1 - Our approach focuses on single debt instruments. A portfolio/benchmarking approachwill be developed in a future paper, including the discussion
of appropriate portfolio risk measures, the role of correlations and the choice of strategies available.
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1 Introduction

The fallout of the 2009 nancial crisis has triggered a slow but certain paradigm shift for the asset

allocation decisions of institutional investors. The objective of diversifying away from market volatility

along with the increasing role played by liability-driven investment is fuelling increasing interest in

unlisted assets with long-dated maturities, predictable cash ows and attractive yields.

Infrastructure investment is amongst the areas that intuitively offer some of these appealing character-

istics. Infrastructure debt is the main candidate for new allocations since it is useful both from a diver-

si cation and asset-liability management perspective for an insurer or pension fund. Moreover, as we

discuss in a recent paper (Blanc-Brude, 2013), most infrastructure nancing consists of debt nancing.

Hence, infrastructure debt is the most relevant area of investment from an institutional perspective.

However, the investment pro le of these assets is not well documented and often ill-understood. Today,

despite a few empirical studies, there does not exist any scienti c benchmark of unlisted infrastructure

debt credit risk.

In this paper, we develop a framework to measure the credit risk of unlisted infrastructure debt, including

the rst formulation of "distance to default" in infrastructure project nance. Section 2 describes our

intuition: we propose to use the debt service cover ratio (DSCR or the ratio of the rm's free cash ow to

its debt service in a given period), which is routinely collected by project nance lenders, to measure and

benchmark credit risk in infrastructure project nance.

Our intention is to develop risk measures for infrastructure debt that are both rooted in modern nancial

theory and implementable empirically because we know that the necessary data can be collected.

Hence, we argue that knowledge of the rst two moments of distribution of the DSCR in project nance

are suf cient to measure and predict the credit risk of individual loans. In section 3, we show that the

distribution of the DSCR captures asset value and volatility and allows measuring distance to default in

project nance. The distribution of the DSCR also provides an unambiguous default point and can thus

be used to build a mapping of expected default frequencies (EDFs) in project nance.

Once characterised, the distribution of the DSCR allows the computation of the expected value E(DSCRt),

the probability of default pt = Pr(DSCRt < 1.x|minj<tDSCRj ≥ 1.x) and the probability of emergence

from default qt = Pr(DSCRt ≥ 1.x|DSCRt−1 < 1.x).

In section 4, we show that these variables are suf cient to compute loss given default (LGD) and the

expression of a loss density function of project nance loans at each point in the project lifecycle. Thus,

the knowledge of the distribution of the DSCR in project nance allows the calculation of a value-at-risk

(VaR) measure of infrastructure project debt, which can be used, for example, to calibrate a risk module,

such as those used in risk-based prudential frameworks.

We highlight the relevance of our conclusions with an illustrative simulation in section 5.

Finally, we conclude that a large sample of observed or simulated project debt cash ows and their

respective DSCR in each period, could be used to derive either a functional form for the distribution
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of the DSCR or an empirical mapping of distance to default and probabilities of default in project nance

at each point in the project lifecycle.

For this purpose, in section 7, we propose a data collection template to built facilitate the participation of

investors and lenders to a data collection effort and improve the future benchmarking and transparency

of infrastructure debt investments.

..
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2 Intuition

In this section, we argue that all necessary infrastructure debt credit risk metrics can be derived from the

rst two moments of the statistical distribution of a project nance debt service cover ratio.

2.1 De ning infrastructure debt

2.1.1 Infrastructure debt is (mostly) unlisted project nance loans

What constitutes "infrastructure debt" remains to be universally de ned. In this paper, we do not concern

ourselves with the oft-mentioned project bonds, partly because they remain rare and therefore of little

relevance from a strategic asset allocation perspective, and partly because they are capital market instru-

ments, which is at odds with one of the primary motives of institutional investors considering investments

in infrastructure: diversifying away from market volatility into unlisted, possibly illiquid assets that also

have an attractive yield.

Instead, we focus on the measurement of credit risk for unlisted senior loans extended to large
investment projects on a limited recourse basis i.e. project nance.

Our focus on project nance is warranted, in the rst instance, because most infrastructure investment

and the immense majority of new or `green eld' investments are delivered via project nancing ; and

second, because contrary to the ill-de ned notion of `infrastructure investment', project nance bene ts

from a clear and universally recognised de nition since the Basel-2 Capital Accord.

"Project nance is a method of funding in which investors look primarily to the revenues

generated by a single project, both as the source of repayment and as security for the

exposure. In such transactions, investors are usually paid solely or almost exclusively out of

themoney generated by the contracts for the facility's output, such as the electricity sold by a

power plant. The borrower is usually a Special Purpose Entity that is not permitted to perform

any function other than developing, owning, and operating the installation. The consequence

is that repayment depends primarily on the project's cash ow and on the collateral value of

the project's assets." (BIS, 2005)

Hence, by focusing on project nance, we capture the bulk of private infrastructure nancing and gain a
clear de nition of infrastructure debt at the underlying level. This is instrumental since our purpose

is to discuss infrastructure investment on a scale that is congruent with institutional investing i.e. implying

substantial asset holdings. To achieve a degree of generality in our conclusions, especially from an asset

allocation perspective, we must focus on the most representative investment format.

2.1.2 The role of debt in project nance

Project nancing amounts to investing in a single-project rm or SPE with a pre-de ned lifespan. Before

the nancing decision can been taken, the SPE has to demonstrate its nancial viability with a high degree

of probability. In the process, two inter-related types of nancial claims are created, splitting the free

2 - As we have identi ed in previous publications, (see for example Blanc-Brude and Ismail, 2013a)
3 - We estimate that more than USD3Tr of project nancing was closed worldwide between 1995 and 2012 (Blanc-Brude and Ismail, 2013b).
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cash ow4 of the project between a senior, xed-rate claim on one hand, and subordinated,
xed-rate and variable rate claims on the other5 (see Blanc-Brude and Ismail, 2013b).

Taken as a whole, the claims that constitute an instance of project nancing can be interpreted as a

portfolio of inter-linked bonds, with different maturities and grace periods, some paying a xed rate of

interest and some paying a variable rate of interest.

The analogy with a portfolio of bonds or cash ows is justi ed by the fact that in the majority of cases,

the project SPE does not own any tangible assets6, or owns assets that are so relationship-speci c 7 that

they have little or no value outside of the contractual framework that justi es the investment.

Limited recourse nancing also means that the owners of the SPE provide very little, if any collateral to

secure the its debt. In project nance, contracts must suf ce to create enforceable and valuable claims

and to de ne expected cash ows with reasonable accuracy (see Blanc-Brude, 2013, for a discussion).

Finally, an important feature of project nance is the role of initial nancial leverage (agreed at nancial

close). In a recent review, we report that senior leverage8 in infrastructure project nance consistently

averages 75% between 1994 and 2012, irrespective of the business cycle, and can be as high as 90%

(Blanc-Brude and Ismail, 2013b).

We and others have argued that the high leverage typically observed in project nance should be inter-

preted as a sign of low asset risk (Esty, 2003; Blanc-Brude, 2013) i.e. lenders agree to provide most of the

funds necessary to carry out the planned investment without further recourse or security because the

probability of timely repayment is considered to be very high. In other words, the `split' of the project's

free cash ow between senior (low risk) and junior (riskier) instruments suggested above, results in a larger

senior tranche if cash ows are more predictable.

2.2 Nature of the underlying asset

Without substantial sponsor guarantees (limited recourse) or any tangible assets collateral (relationship-

speci c capital investment), the only source of present or future value at the level of the project SPE is its

free cash ow, or the cash ow available once the various tasks that the SPE has contractually committed

to accomplish in each period (e.g. build, maintain and operate a large structure) have been executed. There

is no terminal value (TV).

Thus, in limited recourse project nancing, as opposed to traditional corporate nance, the free cash ow

of the rm is the main determinant of asset value. At any time t during the SPE's nite life, the rm's

asset value is simply the sum of expected Cash Flow Available for Debt Service or CFADS, discounted at

the appropriate rate. This expected value is the only quantity against which the SPE may initially borrow

(or later re- nance) any debt.

4 - or net operating cash ow
5 - The senior debt may also be characterised as " xed-spread", while the actual interest rate is benchmark rate plus the spread. The junior claim

receiving a variable spread.
6 - In the most frequent case of public infrastructure projects nanced through a so-called public-private partnership contract, the ownership of

the tangible infrastructure assets remains de facto and, most often, de jure in the public domain
7 - Relationship-speci c assets have very few if any alternative uses e.g. a coal terminal at the end of a single railway line leading to a coal mine in

an otherwise sparsely inhabited part of Eastern Australia
8 - The ratio of senior debt to total investment
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The CFADS thus plays a central role in our approach to risk measurement and the valuation of infras-

tructure debt. It is risky (stochastic) and can intuitively be understood as the underlying process driving

value and risk in project nance debt securities, not dissimilar the underlying stochastic processes referred

to in the design of asset pricing formulas.

Moreover, in project nance, the CFADS can be monitored by lenders on an ongoing basis, and provides a

direct measure of the rm's asset value and volatility.

2.3 Debt service cover ratio and the default point

2.3.1 Ex ante DSCR

The relationship between the CFADS and the expected senior debt service i.e. the ability of a given SPE

to service its senior debt obligation, is captured by a debt service cover ratio (DSCR), which is routinely

calculated by project nance lenders for each SPE.

The DSCR at time t is written:

DSCRt =
Cash Flow Available for Debt Service (CFADS)t

Debt Service (Principal+Interest)t
(1)

in each period t=1,2,..T for a project nancing of maturity T.

Gatti (2012) reports that average ex ante9 DSCRs typically range between 1.35 and 1.40. As SPEs meet

their senior debt obligations, their DSCR can be expected to evolve over time even though lenders may

structure the debt amortisation pro le in such a way that the ex ante DSCR is constant across the lifecycle,

as is often the case in social infrastructure projects with a guaranteed income stream 0.

We draw two conclusions from the de nition of the DSCR.

First, as a function of the CFADS i.e. the underlying process explaining rm value, the distribution of the

DSCR in project nance captures both expected asset values and volatility. We discuss this point in more

details in section 2.4.

Second, the DSCR provides an unambiguous de nition of default, which we discuss next.

2.3.2 Ex post DSCR and the default point

A "hard" default of the SPE i.e. an actual default of payment, can be de ned in terms of the ex post CFADS
at time t, as:

Defaultt ⇐⇒ CFADSt < Debt Service (Principal+Interest)t (2)

which can be expressed in terms of ex post DSCR as:

Defaultt ⇐⇒ DSCRt ≡
CFADSt

Debt Service (Principal+Interest)t
< 1 (3)

9 - For our purpose, it is useful to distinguish between the ex ante and ex post values taken by the cash ows and their associated ratios. Ex ante
cash ows correspond to the values agreed on in the project's nancial model at nancial close. Ex post cash ows and ratios denote the realised values
during the project's life, simulated or observed.
10 - e.g. the Private Finance Initiative in the UK.
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By de nition, if the ex post DSCR equals unity, the SPE is just able to service its senior debt during the

relevant period, and if it falls below unity, the borrower can unambiguously be considered in default.

However, default events may also be de ned more loosely. For example, in the Basel-II framework, project

nance default is de ned as '...past-due more than 90 days on any material credit obligation to the
banking group' (BIS, 2005).

Indeed, lenders typically require the ex ante DSCR to be signi cantly higher than unity in order to create

a credit risk buffer. If the ex post DSCR is too low, debt holders can impose the so-called "lock up" of

equity distributions, until debt service coverage returns to a pre-agreed level. A low ex post DSCR may

thus constitute a breach of the loan's covenants and also be considered an event of default.

Hence, the default point in project nance at time t can be de ned as:

DSCRt = 1.x with x ≥ 0

And since the DSCR provides an unambiguous estimate of the default point of infrastructure project

nance debt, its probability of default at time t can be written:

pt = Pr(DSCRt < 1.x|minj<tDSCRj ≥ 1.x)

i.e. it is the probability that the DSCR reaches the default point conditional on there having been no

default until that time.

Next, in light of the conclusions above, we discuss the relevance of structural credit risk models in the

analysis of project nance credit risk.

2.4 A structural approach to project nance credit risk

We argued above that in limited recourse project nancing, the CFADS can be interpreted as an underlying

process driving asset value and volatility, both of which can be measured by monitoring the DSCR, which

also provides an unambiguous de nition of the default point.

Hence, structural models of credit risk can be expected to provide useful insights into project nance credit

risk. Indeed, approaching debt as a derivative written on an underlying asset value requires estimating

asset value, volatility and a default point.

2.4.1 The relevance of structural models

Structural models postulate the existence of a default triggering mechanism i.e. a discrete event at the

threshold between two states (default vs. no default). In other words, default events are not random

amongst rms but must result from a contractual or nancial breach.

In academic nance, suchmodels are expansion of the work of Black-Scholes (1973) on pricing rm equity

as a call option on the company value, as well as Merton (1974), Black and Cox (1976) and Ingersoll (1977)

who established what is now referred to as Merton model.

11 - Moody's de nition of project nance default as 'a missed or delayed disbursement of interest and/or principal...' Moody's (2013) is congruent
with this view.
12 - The DSCR should also on average be higher than unity so that equity/junior distributions can be made once senior debt obligations have been

met
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In the Merton model, the value of the company follows a stochastic process (Vt). The company is nanced

from debt and equity, its debt is a single obligation and resembles a zero coupon bond with face value

B and maturity T. At time t, the value of the rm is the sum its equity St and debt Bt (Vt = Bt + St, for

0 < t < T).

Under this model, the rm does not pay any dividends nor issues any new debt. If at maturity the value of

the rm is less than its liabilities (VT < B), the rm is considered to be in default. The equity holders then

choose not to provide any new equity capital as an expression of their 'limited liability option' and hand

over the rm to the debt holder, which liquidates the remaining assets and receive the proceeds BT = VT.

If there is no default, the debt holder receives the payoff B, and equity holders receive the remaining of

the rms value VT − B.

It is now a classic result that this model implies for the value of the rm's equity at time T to be equiv-

alent to the payoff of a European call option on VT, while the debt value equals the nominal value of

liabilities (as risk free zero coupon bond) less the payoff of a European put option on VT. Under a number

of assumptions, there is a closed form solution for the value of the rm's debt, which can be priced as

the value of standard plain vanilla options (McNeil et al., 2005).

As is well-documented in the literature, this model has been criticised for making a number of assump-

tions, including the lognormal distributions of returns and a simplistic capital structure (the rm borrows

once and subsequently de-leverages). The de nition of default used in the Merton model has also been

criticised: the default point is not only assumed to be known unambiguously (when asset value falls below

liabilities) but the rm must default exactly when this point is reached, neither of which is self-evident

empirically.

However, it should be clear from the discussion above that the Merton model is rather well-suited to

project nancing: SPEs borrow once and subsequently de-leverage, default is unambiguously known and

actively monitored, and the underlying process driving asset value (CFADS) can be captured by the distri-

bution of the DSCR.

2.4.2 Signi cance of the DSCR distribution

Simply put, lending to a project SPE can be portrayed as the equivalent of writing a derivative contract

on the project's CFADS with the ex ante agreed debt service as the strike price.

As argued above, in limited-recourse project nancing, the discounted cash ow available for debt service

(CFADS) is equivalent to the rm's asset value, and CFADSt can be described as a stochastic process

explaining the change in asset value in each period.

DSCRt, the ratio of the CFADSt to the expected debt service at time t, captures the information that is

both necessary and suf cient to value infrastructure project debt: its expected value is a function of

asset value, its standard deviation is a measure of the volatility of asset value, and its distribution can

be used to derive the conditional probability of reaching the default point de ned above at time t i.e.

Pr(DSCRt < 1.x|minj<tDSCRj ≥ 1.x).

13 - Including that the rm's value process follows a lognormal distribution
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In the rest of this paper, we will show that if a robust functional form can be established for DSCRt i.e. at
each point in the project lifecycle, it is suf cient to derive the necessary credit risk metrics of infrastructure

project nance debt. Alternatively, without assuming its functional form, the empirical distribution of

DSCRt can be used to build a mapping of expected default frequencies (EDF) in project nance. We return

to both approaches point in section 3.

In effect, DSCRt is akin to the concept of "distance to default" (DD) already de ned in the credit literature

(KMV, 1993). We develop this point next, in section 3.1.

Finally, wewill show in section 4 that the knowledge of the distribution ofDSCRt also allows themeasurement

of loss given default and in ne, the expression of a loss density function for project nance loans, which

can be used, for example, to calibrate a dedicated risk module with a value-at-risk (VaR) measure.

..
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3 Predicting probabilities of default

In the structuring process of infrastructure project debt, the amortisation pro le is designed to deliver an

expected value of the DSCR, which is necessarily higher than unity 4. Credit risk in project nance arises

because the ex post DSCR may be different from its ex ante value.

The notion of distance to default (DD), derived from structural credit models, is the number of standard

deviations required for a rm to reach its default point within a speci ed time horizon t. Computing DDt

requires estimating asset value, volatility and the default point at the relevant horizon, and it is often put

forward in the credit literature as a suf cient statistic to provide a rank ordering for publicly traded rms

default risk: the higher DDt, the less likely it is for a rm to default at time t (KMV, 1993).

As far as we know, the notion of distance to default has never been applied to unlisted loans like infras-

tructure project nance debt. However, DDt is intuitively linked to DSCRt and we have argued in the

previous section that the distribution of DSCRt is suf cient to derive a volatility measure of the under-

lying asset and an unambiguous estimate of the default point.

In this section, we re-formulate the DD measure for an individual project as a function of its DSCR distri-

bution and the base case debt service. We show that the knowledge of the rst two moments of the

DSCRt distribution (mean and variance) is suf cient to derive DDt for individual loans.

3.1 Distance to default

In the Merton model, the rm's asset value follows a lognormal process with expected growth rate μ and

its asset volatility is σV, for t = 1. Hence, the probability of default for an initial rm's asset value of V0 is

probability of default = Φ
[
−

ln(V0
B ) + (μ − 1

2σV)

σV

]
(4)

Drawing from the Merton model, the KMV model de nes the negative of the quantity inside the brackets

as the Distance to Default or DD KMV (1993). The default probability is the area under the distribution

below the DD point.

probability of default = Φ [−DD] (5)

Using this de nition, together with a number of assumptions, KMV proposes at a simpler expression for

DD. For default point value of B̄, DD is given by:

DD :=
ln(V0)− ln(B̄)

σV
(6)

which can be approximated as (McNeil et al., 2005):

DD ≈ V0 − B̄
σVV0

(7)

14 - This is usually referred to as the "bank base case"

..
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or, without loss of generality (Crosbie and Bohn, 2003):

Distance to Default =
[Market value of assets]− [Default point]
[Market value of assets].[Asset volatility]

(8)

where the asset volatility is the standard deviation of the annual percentage change in the asset
value.

The KMV model premises that DD is a suf cient statistic to arrive at a rank ordering of default risk,

where the numerator in (6) expresses the rm's nancial leverage or nancial risk, while the denominator

re ects its business risk. In other words, KMV assumes that differences between companies are re ected

in their asset values, asset volatilities and capital structure, which are all incorporated in the DD measure

(Kealhofer, 2003) and that rms with equal DD must have equal default probabilities 5.

When applying the KMV model, the company's unobservable asset value and asset volatility are inferred

using observable equity market returns and the default point is assumed to be the value of its short

liabilities and half of its long term liabilities value for nancial rms, and a percentage of total adjusted

liabilities for non- nancial rms.

In effect, the DSCR in project nance re ects the nancial risk of the investment driven by (de)-leveraging,

as well as the business risk implied by the volatility of the CFADS.

Following the de nition of default in project nance given in (2), Distance to Default for infrastructure

project nance loans at time t can be de ned as:

DDt =
CFADSt − Debt Servicet

σCFADStCFADSt
(9)

Using the de nition of DSCRt in (1), the above expression can be written as:

DDt =
1

σCFADSt

(1 − 1
DSCRt

) (10)

(10) can be re-written as a sole function of DSCRt by expressing the volatility of CFADSt as a function of

that of DSCRt.

We have CFADSt = DSCRt×Debt Servicet, and we know that σCFADSt is expressed as a percentage change

in the asset value in (10), thus:

σCFADSt = σDSCRt

Debt Servicet
Debt Servicet−1

Replacing in (10), we have:

DDt =
1

σDSCRt

Debt Servicet−1

Debt Servicet
(1 − 1

DSCRt
) (11)

where σDSCRt is the standard deviation of the annual percentage change in the DSCR value.

Hence, the distribution of DSCRt together with the debt repayment pro le (growth rate of the
debt service) are suf cient inputs to estimate the Distance to Default of project nance loans.

15 - The KMV model also introduces a number of modi cations to the basic Merton's model, such as assuming that default can happen at any time,
the empirical determination of the default point (B̄), and allowing for cash payouts.
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3.2 Expected default frequencies in project nance

DD only provides a rank ordering of default risk andmoving fromDD to quantifying probabilities of default

requires either parametric assumptions regarding the underlying process driving asset value (c.f. Merton

model), or the empirical mapping of the relationship between DD and probabilities of default as proposed

by KMV. We discuss both in turn below, as well as the expected role of the project lifecycle on credit risk.

3.2.1 A functional form for DSCRt

The most powerful implementation of a structural model relies on assuming and calibrating a functional

form for the underlying process. In our case, any functional form taken by the CFADS is re ected in the

DSCRt. We may thus assume a functional form for DSCRt.

A key question is to know whether there is a single, unimodal distribution of DSCRt for all projects or if

the different moments of the distribution are themselves determined by a series of factors.

This is an empirical question, which we return to in section 6.2. Existing empirical studies of default proba-

bility in project nance (Moody's, 2013; Standard & Poor's, 2004) content themselves with measuring the

number of observed default events during a given period within a population of loans. As such, they

assume a binomial distribution of default rates. In other words, they assume that each loan is equally

likely to default within the considered time period. 6 However, it is unlikely that a single credit risk pro le

exists for all infrastructure project loans and the reported probabilities of default may require quali cation.

We have argued before that industrial sector classi cations (e.g. roads, electricity &c.) are unlikely to

explain the risk pro le of infrastructure investments (Blanc-Brude, 2013) i.e. any attempt to weight the

distribution of default frequencies by industrial sector is expected to fail a test of goodness of t. Instead,

we expect speci c risk factors, in particular, revenue risk factors to have the most signi cant impact on

credit risk.

More recent empirical studies address the dynamic dimension of project nance credit risk and compute

marginal default rates (in each year from origination). They report that average default probabilities in

project nance continuously decline throughout the project lifecycle (Moody's, 2013, 2012). However,

rather than the passage of time, this observed credit migration may be better explained by changes in the

level and variance of DSCRt.

We currently do not have the answers to such questions about the empirical distribution of DSCRt in

project nance. In section 6.2, we discuss the need to systematically collect data on the risk factors that

may explain the distribution ofDSCRt and therefore be instrumental in the benchmarking of infrastructure

debt.

Next, we describe the alternative approach to assuming and calibrating a functional form for DSCRt.

3.2.2 Empirical mapping of EDFs for project nance loans

The empirical mapping of default rates from DD measures has been developed by KMV for publicly traded

companies using data on historical default and bankruptcies. Once the mapping has been built with a

16 - This is usually referred to as the "naive" de nition of probability: a set contains a nite number of outcomes and every experiment in the set is
equally likely (Blitzstein, 2006)
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satisfactory level of t, DD measures can be used to derive forward-looking default probabilities within a

given time period i.e. expected default frequencies (EDF).

Moody's uses an empirical default database, with more than 8,600 defaults as of the end of 2011, to build

functional relationship or mapping between DD and EDFs relying on historical data. Kealhofer (2003)

reports a strong empirical relationship between DD and observed default rates.

Following this approach, using either an observed or assumed distribution of DSCRt, a complete mapping

of DDt and EDFt may be established from DSCRt in project nance.

As an illustration, we discuss a simulated mapping of project nance EDFs in section 5.

3.2.3 A dynamic risk pro le

When applied to listed rms, the KMV model is used to predict default frequencies within a single period

(e.g. the following 12 months). Any multi-period estimate of DD entails increasing estimation errors of

asset prices and volatility.

In the case of project nance however, credit risk is dynamic (i.e. follows a predictable migration). Contrary

to publicly traded rms, project nance SPEs have a nite life and each period in their lifecycle can

be characterised ex ante: as have argued on theoretical grounds in a previous paper (Blanc-Brude and

Ismail, 2013b), the risk pro le of infrastructure project nance debt is dynamic because of the ongoing

de-leveraging of the single-project rm or SPE. Sorge (2004), following an insight from Merton (1974)

suggests that two effects impact long-term credit risk in project nance: longer maturities are less likely

to be repaid but continued de-leveraging has the opposite effect. For rms with a high level of initial

leverage, the later effect can be strong enough to offset the impact of the long-term on credit risk.

Whether a functional form is assumed for the distribution of DSCRt or an empirical mapping is built form

observed DSCR values, the dynamic nature of the underlying process should be addressed in the modelling

of infrastructure project debt credit risk.

With a continuously de-leveraging rm, DSCRt may, ceteris paribus, be expected to be an increasing

function of time. However, we also know from practice that project nance debt service can be structured

(sculpted) to deliver a constant ex ante DSCR. The endogenous nature of credit risk in project nancing

explains its dynamic nature (see Blanc-Brude and Ismail, 2013b, for a discussion).

This opens a number of empirical questions to be addressed in due course to model project nance credit

risk, including whether there is any evidence of heteroscedasticity in DSCRt (non-constant variance) .

Hence, empirically, we must consider the determinants of DSCRt both in the cross-section and in time.

We return to this point in section 6.2.

3.3 Emergence from default

Finally, we know from the empirical literature on project nance that events of default rarely lead to

liquidation i.e. the lender exercising its option to capture the remaining asset value (recovery value) in

the defaulted rm. Instead, there is a documented tendency for lenders and borrowers to 'work out' a

restructuring and for SPEs to emerge from default.
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The nite life and dynamic credit pro le of project nance structures provide a greater visibility for lenders

who need to decide whether to allow a restructuring or to liquidate the rm. Through a restructuring,

lenders may in fact increase the value of the debt by imposing new conditions such as cash sweeps 7.

Given the signi cant role played by workouts and restructurings in the event of default in project nance,

any assessment of credit risk should incorporate this dimension.

Again the knowledge of the distribution of the DSCRt is suf cient to derive the necessary statistics, since

the probability of emergence from default at time t or qt, is simply the probability of observing a DSCR

higher than the default point in a given period, conditional to having observed a DSCR below the default

point in the previous period, or:

qt = Pr(DSCRt ≥ 1.x|DSCRt−1 < 1.x)

Having determined the role of DSCRt in explaining and predicting probabilities of default and emergence

from default in project nance, we now turn to the estimation of loss given default in section 4.

17 - All CFADS must be used to pay down debt for a given horizon.
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4 Loss given default

In this section, we propose an expression of both the value and loss functions of infrastructure project

nance debt in terms of the DSCR. The loss function allows the calculation of different quantile-based

risk measures such as the 99.5% value-at-risk (VaR) or the expected shortfall measure (conditional VaR)

of project nance debt.

Finally, we discuss the question of discounting and propose a short solution for the purpose of the

empirical illustration in section5. We will discuss the derivation of the appropriate discount rates for

project nance debt in a future paper.

4.1 Value and loss functions

4.1.1 Payoff given default

In the structural framework described earlier, the recovered amount (recovery) once the SPE defaults at

a given time, is simply the CFADS at that time. Indeed, there is no recourse to the SPE shareholders and

no TV.

Hence, if default occurs at time t, the payoff C at time t is:

Ct =

{
Dt with probability (1 − pt);

E(CFADSt) with probability pt
(12)

for pt is the probability of default at time t, conditional to no default prior to that time. As discussed in

section 2.3.2, pt = Pr(DSCRt < 1.x|minj<tDSCRj ≥ 1.x).

The cumulative discounted payoff is written:

V0 =
∑T

t=1
1

(1+rt)t
(Dt × (1 − pt) + E(CFADSt)× pt) (13)

=
∑T

t=1
1

(1+rt)t
(Dt × (1 − pt) + E(DSCRt)× Dt × pt) (14)

=
∑T

t=1
Dt

(1+rt)t
(1 − pt × (1 − E(DSCRt))) (15)

4.1.2 Payoff with emergence from default

We discussed the role of workouts in section 3.3. For simplicity, we limit our analysis to the possibility of

emergence in the period immediately following default i.e. once default occurs at a given time t, there is

a qt probability of emerging from default by the beginning of t + 1. Expression (13) is now written:

V0 =
∑T

t=1
1

(1+rt)t
(Dt × (1 − pt

1+pt−1qt/(1−pt−1)
) + E(CFADSt)× pt

1+pt−1qt/(1−pt−1)
) (16)

=
∑T

t=1
Dt

(1+rt)t
(1 − pt(

1
1+pt−1qt/(1−pt−1)

)× (1 − E(DSCRt))) (17)

where, considering the emergence case, pt is the probability of defaulting at time t conditional on surviving

at previous time period, qt = Pr(DSCRt ≥ 1.x|DSCRt−1 < 1.x).

Letwt =
1

1+pt−1qt/(1−pt−1)
, the cumulative discounted payoff is:

..
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V0 =
T∑

t=1

Dt

(1 + rt)t
(1 − pt × wt × (1 − E(DSCRt))) (18)

where 0 < wt ≤ 1.

4.1.3 Expected loss

So far, we have expressed the expected value of the cumulative payoff received for holding project debt

from origination to maturity. The loss is de ned as the difference between the face value of the project

debt and its expected value. The loss function L is written:

L0 = B0 − V0 (19)

where, B0 is the "base case" or ex ante debt service discounted at the relevant rate rt

B0 =
T∑

t=1

Dt

(1 + rt)t
(20)

and V0 is the expected payoff as per (18).

Hence,

L0 = B0 −
T∑

t=1

Dt

(1 + rt)t
(1 − pt × wt × (1 − E(DSCRt))) (21)

Loss expressed as a percentage of initial investment value is written:

L̄0 = L0/B0 = 1 − 1
B0

T∑
t=1

Dt

(1 + rt)t
(1 − pt × wt × (1 − E(DSCRt))) (22)

4.1.4 Expected loss at time t

Finally, to account for the dynamic risk pro le of project nance debt, we may want to compute a loss

function across the lifecycle i.e. at each point during the maturity of the debt. This would also be useful

in the hypothesis of the secondary market for infrastructure project debt.

Thus, conditional on no default prior to or at time t, the loss value at time t > 0 is written:

Lt = Bt −
T∑

i=t+1

Di

(1 + ri)(i−t)
(1 − pi × wi × (1 − E(DSCRi))) (23)

Again, the distribution of DSCRt is instrumental in this setting since it includes information about both

E(DSCRt), pt and qt. The other two inputs are the ex ante debt service Dt and the appropriate discount

factors rt, which we have not addressed so far and return to in section 4.2.

4.2 Discount rates

4.2.1 Choice of probability measure

The choice of discount rates is determined by the choice of probability measure for pt and qt.

..
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Future debt cash ows can be discounted at the risk-free rate, for the relevant horizon, if their value

is weighted by the corresponding risk-neutral probabilities of default i.e. those that would eliminate all

possibilities of arbitrage between buyers and sellers of these cash ows (the risk-neutral measure). In

structural models like the Merton model, the underlying value process is assumed to follow a stochastic

process which is the result of ef cient markets (no arbitrage condition).

However, when observing default rates in project nance debt empirically, we only know probabilities of

default in the so-called physical measure. Because we do not know how far the physical measure lies

from the risk-neutral measure (how ef ciently the option written on the CFADS is priced) we cannot rely

on risk-free discount rates and must examine the determinants of adequate discount factors.

4.2.2 Discount factor at t0

We do not know the interest rates rt term structure in (21). At this stage, we propose to use the yield y on

the debt investment implied from the debt base case, as the appropriate discount factor approximating

the interest rate term structure.

The yield is de ned as the interest rate satisfying:

B0 =
T∑

t=1

Dt

(1 + y)t
(24)

Given values for the initial investment B0 and the debt service Dt, y can be derived.

The expected loss value at t0 is written:

L0 = B0 −
T∑

t=1

Dt

(1 + y)t
(1 − pt × wt × (1 − E(DSCRt))) (25)

4.2.3 Discount factors at time t

To calculate loss at time t, the associated series of yield to maturities has to be calculated rst.

The series {Bt, yt} (for t = 1, 2 . . . , T − 1) conditional on no prior default, can be calculated recursively

employing the base case together with realized debt repayment at previous time period, starting with the

known value of the investment at time t = 0, as well as the accompanying yield to maturity y0 satisfying

equation (24).

Given the investment value of Bt, the subsequent investment values can be calculated conditional on no

prior default as:

Bt+1 = (1 + yt)Bt − ˆDt+1 (26)

for ˆDt+1 is the realized or actual debt repayment at time t + 1 8.

This follows directly from the consistency condition according to which value at time t can be calculated

as the discounted value one period ahead, combined with the discounted value of debt service payment

at that time

Bt =
Dt+1 + Bt+1

1 + yt
18 - If realized debt repayment ˆDt+1 equals to the base case debt repayment Dt+1 , it follows that the yield at time t + 1 equals to that of time t.
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.

The corresponding yield to maturity (yt) can be calculated iteratively based on the investment value

together with the base case cash ow payments. Hence,

Bt =
T∑

i=t+1

Di

(1 + yt)(i−t)
(27)

The loss function at time t is written:

Lt = Bt −
T∑

i=t+1

Di

(1 + yt)(i−t)
(1 − pi × wi × (1 − E(DSCRt))) (28)
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5 Illustrative simulation

Having established a methodology to derive distance to default, conditional probabilities of default and

emergence from default, and a loss function for infrastructure project debt, we now propose a simple

illustration of our results.

5.1 Approach and objectives

Our approach consists of assuming values for the mean and variance of DSCRt, initial SPE leverage and

a debt ammortisation pro le. These variables are well-documented in project nancing (see for example

Gatti, 2012; Blanc-Brude et al., 2010).

While the simulation generates values at each point in the life of a population of senior project loans, it

relies on assumptions, in particular about the volatility of DSCRt, that are made at one point in time, here

t0. As such, this simulation represents a prior about the different states of the world that might affect

loan repayments. 9

The numerical simulation is set up thus: rst, assuming a total investment normalised at 100, a base case

debt service (principal and interest) Dt is derived from the proposed average leverage value and the choice

of ammortisation pro le.

Next, using the relationship between DSCRt and CFADSt described in (1) the mean and variance of CFADSt

are derived. With these results, the simulation is performed assuming an assumed functional form for the

distribution of CFADSt.

Based on the distribution of the CFADS at time t, 100,000 Monte Carlo runs are performed to compare

the values of Dt and CFADSt i.e. whether the simulated cash ow meets the debt service obligation of the

SPE.

For each run, if the project defaults at time t as de ned in (2), we consider the conditional probability of

emergence in t + 1 as de ned in (3.3), which is a function of the distribution of DSCRt+1. If the project

does not emerge from default in at t + 1, it is considered bankrupt and excluded form the next run. By

de nition the recovery value is E(CFADSt).

We calculate DDt as de ned in (10) and observe pt, the probability of default at time t conditional on no

prior default, and qt the probability of emergence from default at time t conditional on default at time

t − 1.

Next, as described in section 4, for each run at time t, we calculate the base case value Bt using the yield

from t to T as the discount rate, and the expected loss Lt as de ned in (23), using the values obtained

earlier for pt, qt and E(DSCRt). Finally, we calculate the 0.5% quantile of the distribution of Lt, that is, the
99.5% value-at-risk VaRt.

19 - Once information about the realised states of the world becomes available (at t2 , t3 , &c.) this prior can be revised or updated conditional on this
new information. Here, we compute the probability of default at time t conditional on simulating no default until t− 1, whereas ex post, it is possible
to compute the probability of default at time t conditional on observing no default until time t − 1.
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Having made a (strong) assumption of about the functional form of the DSCR distribution, the outputs

of the simulation are thus:

l DDt: distance to default at time t, is computed according to equation (11);

l p∗t: the probability of default at time t, is computed as the ratio of simulated defaults (DSCRt < 1) to

that of surviving loans at time t;
l q∗t: the probability of emergence at time t is computed as the ratio of simulated defaults at time t− 1

to that of emerging defaults (DSCRt>1) at time t within the defaulted population at time t − 1;

l E(Lt): the expected average loss at time t is computed according to equation (23);

l VaRt: is the 0.5% quantile or 99.5% value-at-risk at time t of Lt.
l LGDt: the average loss given default, that is E(Lt|DSCRt<1)

5.2 Assumptions

Table 1 summarises the main assumptions made in our simulation. As discussed above, the key assumption

is to assume a functional form for the distribution of CFADSt, in this case the lognormal distribution. It

is a strong assumption that would not be required if suf cient empirical observations of DSCRt could be

obtained, in which case a mapping of observed defaults and distance to default implied by the distribution

of DSCRt could be derived without making further assumptions about the distribution of the underlying.

The second important assumption made is the mean value of DSCRt, its rate of change and its variance.

We examine two generic cases described in table 2.

1. Increasing and increasingly volatile DSCRt: this is the most generic case of project nancing. As

the SPE de-leverages, its DSCR is expected to increase, however, revenue and costs also become

more uncertain, resulting in a higher volatility of the DSCR as t increases. This pro le corresponds

to numerous projects which have an increasingly uncertain future, especially on the revenue side, but

are also expected to de-risk with time, starting for their high initial leverage. Toll roads and power

plant projects are typically structured this way. We label this case "generic economic infrastructure

project", as illustrated on gure 1.

2. Constant and stable DSCRt: the second case under consideration is more representative of the so-

called "social infrastructure model" i.e. the SPE nancing is structured so that the expected value of

DSCRt is constant. This is frequent practice for school projects in the UK for example. A constant DCSR

is a choice made by lenders in the structuration of the nancing, which we interpret as signalling

a constant expected risk pro le (otherwise lenders can always structure a project so that the DCSR

increases with time). If the risk pro le is assumed to be constant, then distance to default must be

constant, hence the volatility of DSCRt must be constant as well, as shown on gure 2.

5.3 Results

Two off-setting mechanisms drive the size of expected and extreme losses in senior infrastructure project

debt:

l As the debt matures, asset value (the discounted sum of future cash ows) decreases and the relative
size of a one-period loss (assuming emergence from default) increases.
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Table 1: General assumptions

Variable Assumption

CFADS distribution Lognormal
SPE t0 leverage 75%
Ammortisation pro le constant at an interest rate of 6%
Maturity 20 years
Average DSCR 1.4
Default Can only happen once between t1 and T
Emergence from default Can only happen at t conditional on default at t − 1

Figure 1: DSCRt expected value ± one standard deviation, generic economic infrastructure project debt
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Figure 2: DSCRt expected value ± one standard deviation, generic social infrastructure project debt
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Table 2: DSCRt assumptions

Variable Generic economic
infrastructure project

Generic social infrastructure
project

DSCR0 1.3 1.25
DSCRT 1.6 1.25
ΔDSCRt linear from t0 to T no change
σDSCRt 0.2 0.1
σ2DSCRt 0.04 0.01
Δσ2DSCRt +0.1% no change
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l At the same time, the number of potential future defaults decreases with the number of remaining

periods until maturity. Since the expected loss is a function of all future potential defaults its absolute
size decreases with time.

The combination of these two mechanisms can lead to a non-linearity in the risk pro le if the balance of

the two effects eventually reverses. We discuss this in more details below.

5.3.1 Generic economic infrastructure project

The credit risk pro le of our generic economic infrastructure project nancing are shown on gures 3, 4

and 5. The dynamic risk pro le created by project nancing results in increasing values of DDt, despite

the higher volatility of DSCRt, falling probabilities of default with time and increasing probabilities of

emergence from default.

As should be expected given our assumptions, there is a strong statistical relationship between DDt and pt

as illustrated on 6. If the validity of the assumptions made about the functional form of the distribution

of DSCRt can be con rmed empirically, then such a mapping can be used to predict default in project

nance at different points in the project lifecycle.

Figure 7 shows an expected loss given default with a complex pro le. During a rst period, decreasing

probabilities default during the loan's life result in lower absolute loss and thus lower expected loss given

default. Towards the end of the loan's life, the effect of an increase in the relative size of the loss dominates

and LGDt increases sharply. During the last period, an investor who holds such a loan faces a higher loss

given default than ever before.

Figure 8 shows that the VaR of project nance debt exhibits a "kink" after a few years. Initially therelative
loss effect described above dominates but the rapid decrease in the probability of default (driven by the

increasing DSCRt) quickly shifts the balance in favour of the absolute loss effect, shrinking the size of

extreme losses. In the last period, with a low default probability no more future cash ows to generate

future potential losses, extreme losses are so rare that the 0.5% quantile is zero. 0.

Finally, we note that the results obtained from the simulation, both in terms of average probability of

default and risk pro le, are congruent with existing empirical research on default and recovery in project

nance, including, for example, Moody's (2013).

5.3.2 Generic social infrastructure project

Figures 9, 10 and 11 show the results of the same simulation exercise assuming a constant and stable

DSCR across the lifecycle of a generic social infrastructure project.

While this is likely to be a more restrictive setting than the previous case, this example highlights a

different behaviour and provides the justi cation for empirical research and testing whether the DSCR

can be considered to be drawn from one or several populations of project nancings, as we discuss in

section 6.2.

20 - As pt decreases, qt increases and Bt shrinks, the size and likelihood of extreme loss rapidly diminishIn a previous paper, we argue that such
non-linear and dynamic risk pro le is has strong implications for portfolio construction with infrastructure debt (see Blanc-Brude and Ismail, 2013b,
for a detailed analysis).
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Figure 3: Distance to default, generic 20-year economic infrastructure project debt
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Figure 4: Probabilities of default at time t, generic 20-year economic infrastructure project debt
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Figure 5: Probabilities of emergence at time t, generic 20-year economic infrastructure project debt
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Figure 6: Mapping of DDt and pt , generic 20-year economic infrastructure project debt
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Figure 7: Loss given default at time t, generic 20-year economic infrastructure project debt

Figure 8: 99.5% Value-at-Risk at time t, generic 20-year economic infrastructure project debt
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With a constant and stable DSCR, by construction, we obtain a stochastic and random behaviour: distance

to default is high, probabilities of default are low and probabilities of emergence are very high; however,

there is no systematic effect of the lifecycle since the nancing has been structured to compensate for

this effect.

As a consequence, as shown on gure 12, there is no statistically signi cant relationship (i.e. no obvious

mapping) between distance to default and probabilities of default. Indeed, the range of values taken by

both variables is very limited.

Expected loss given default shown on gure 13 is continuously increasing because, contrary to the

previous case, probabilities of default do not trend down with time. Hence, as the debt matures, the

size of a one-period loss relative to asset size increases, leading to the computation of higher losses given

default.

Finally, value at risk exhibits the same kink than in the previous case, but much later in its life as gure 14

illustrates.

Hence, a constant expected DSCR with constant variance signals infrastructure project debt with a risk

pro le which is horizon-independent. Moreover, any variability observed across the lifecycle is completely

idiosyncratic and therefore diversi able.
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Figure 9: Distance to default, generic 20-year social infrastructure project debt
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Figure 10: Probabilities of default at time t, generic 20-year social infrastructure project debt
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Figure 11: Probabilities of emergence at time t, generic 20-year social infrastructure project debt
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Finally, we note that Moody's (2013) also reports very low and constant average probabilities of default

(around 0.5%) for "PPP/PFI" project debt, which are not dissimilar to our ideal-type social infrastructure

project with a constant DSCR across the lifecycle.
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Figure 12: Mapping of DDt and pt , generic 20-year social infrastructure project debt
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Figure 13: Loss given default at time t, generic 20-year social infrastructure project debt
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Figure 14: 99.5% Value-at-Risk, generic 20-year social infrastructure project debt
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6 Conclusions

6.1 The power of the DSCR

In this paper, we have shown that full knowledge of the distribution of the DSCR in infrastructure project

nance is suf cient to characterise the credit risk of infrastructure project debt.

Probably the most appealing aspect of our methodology is to reduce the empirical task of measuring and

predicting credit risk to a univariate problem: the estimation of the different moments of DSCRt.

Theoretically speaking, our focus on the DSCR in project nance goes at the heart of the Merton model.

The DSCR available in project nancing offers the opportunity to measure a dimension of credit risk

which typically remains unknown to lenders in the case of classic corporate debt. In limited-recourse

project nance, asset values, volatility and the default point can be observed and monitored directly.

Empirically, speaking, our methodology thus avoids relying on proxies (such as inferring asset volatility

from listed equity volatility) or ambiguous default points. All the information necessary about asset value,

volatility and where the default point lies in included is the distribution of DSCRt.

Operationally, our approach reduces parameter estimation risk considerably.

Indeed, cash ow based models used to derive measures of credit risk produce either sensitivity analyses

or Monte Carlo simulations. In effect, both techniques imply a distribution of input variables. Each of

the input variable distribution is an estimation problem and the opportunity for estimation errors.

Moreover, cash ow sensitivity analyses or simulations require joint inputs (e.g. income variability and cost

variability), which raises the issues of the relationship between the distribution of each input variable i.e.

risk correlations. The number of correlations growth exponentially with the number of model inputs and

each pair-wise risk correlation parameter is the opportunity for another set of estimation errors. 4

Hence, limiting our methodology to the estimation of the distribution of DSCRt minimises both model and

estimation risks. But while it is indeed the most parsimonious approach, the rigorous and robust statistical

estimation of DSCRt is all the more important if our proposed methodology is to produce viable results.

In turn, there is a signi cant need to collect adequate data and to continue data collection efforts on an

ongoing basis, which we discuss next.

6.2 The need to standardise cash ow reporting

Given the potential role of the distribution of DSCRt for the benchmarking of credit risk in infrastructure

project nance, a number of key empirical questions need answering before robust empirical results may

be proposed.

21 - Observing the effect of ±x percentage points variations of one or several input variables on output variables.
22 - Attributing a probability distribution to input variables and observing the distribution of output variables
23 - The shock applied in sensitivity analyses implies its likelihood from the point of view the analyst: choosing to test the impact of a 1% increase

of construction costs implies that the scenario under consideration is more likely than if a one percentage point increase in interest rates is considered.
24 - In fact, the majority of cash ow-based risk models ignore risk factor correlations and assume independence between risk factors.
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For example, considering a large sample of DSCR observations at each point in the project lifecycle:

1. Is the expected value of DSCRt explained by xed factor effects in the cross-section (i.e. risk factors)

or do all DSCRs come from the same population?

2. If systematic risk factors explain the expected mean of each DSCRt population, does this mean value

change over time? Does it have a constant variance in time or is there evidence of diffusion?

3. What functional form can be assumed for the distribution(s) of DSCRt and what are its (their) param-

eters?

4. Alternatively, what is the functional form of themapping of distance to default (calculated fromDSCRt)

and observed probabilities of default. What are the parameters of this mapping?

To answer these questions, a number of data items need to be systematically collected and aggregated.

This data can then be used to conduct the necessary analyses 5 and determine the characteristics of the

distribution(s) of DSCRt in project nance.

Comprehensive and systematic data collection with regards to DCRSt also has wider bene ts.

The documentation of the distribution of DSCRt contributes directly to the benchmarking of infras-
tructure debt credit risk.

It can also help create greater transparency between originators and investors and support the growth of

an industry (infrastructure nance) which the policy-maker has repeatedly ear-marked as strategic and

instrumental in securing the long-term development and wealth of nations

Finally, and perhaps most instrumentally, the regulation of nancial entities providing liquidity to the

infrastructure project nance sector, be they banks or institutional investors, can only be improved by a

better understanding of the credit dynamics of project nance.

The implementation of the rules established by the Basel Committee or the European Insurance and

Occupational Pension Authority for example, may be improved by considering project nancing as
a credit category in its own right, if it can be shown to have unique and distinctive characteristics

compared to other credit instruments.

Thus, in the Appendix of this paper (section 7), we propose a simple format of the minimum Cash Flow

Reporting requirements necessary to benchmark the credit risk of infrastructure debt.

Combinedwith themethodology proposed above, the proposed cash ow database is suf cient to estimate

the differentmoments ofDSCRt and fully characterise the credit risk of infrastructure project nance debt.

25 - Variants of ANOVA (analysis of variance) with a focus on panel data analysis implying signi cant explanatory variables in the cross-section as
well as time series effects
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7 Appendix: Cash ow reporting requirements

This annex describes the key data items that need to be collected to establish the distribution of DSCRt

in project nance along with its statistical determinants. Table 3 describes the necessary cash ow data

to be collected at the SPE level as well as the most relevant risk factors that may be useful in explaining

the distribution of DSCRt and apply the methodology proposed in this paper.

Applied to a large sample of DSCRt observations, the cash ow data described in table 3 is suf cient to

assess the determinants of the distribution of DSCRt and implement the methodology discussed in this

paper.

Apart from the debt cash ows and ratios themselves, only the factors which are expected to have a

systematic impact on DSCR variance have to be collected.

Existing empirical research on the determinants of credit spreads in project nancing (Blanc-Brude and

Strange, 2007; Blanc-Brude and Ismail, 2013b) suggest that a number of risk factors are instrumental in

the pricing of infrastructure debt. As a consequence, we expect similar factors to be signi cant determi-

nants of credit risk and of the distribution of DSCRt. They are the main sources of cash ow volatility in

project nance.

Nevertheless, given the limited current knowledge of the signi cant determinants of credit risk in project

nance, a number of variablesmay also be collected for the purpose of testing the existence of a systematic

relationship with the expected value and variance of DSCRt. For example, data about industrial sectors.

The periodicity of the reported cash ow data determines the potential uses of the dataset, including for

benchmarking purposes. Considering the illiquidity and long maturities of SPE debt, annual or bi-annual

reporting can be considered suf cient.

In the Merton model and the discussion above, the rm enters into a single debt contract, which is repaid

gradually and according to its schedule unless there is a default. In effect, a project SPE may use several

debt facilities and repay them according to varying schedules. It may also pre-pay or re- nance its debt to

bene t from lower interest rates, even though with the rise of institutional investment in infrastructure

debt, this practice may become less frequent 6.

Hence, data may also be collected at the debt facility level. Table 4 describes the cash ow data, price and

covenant data that may be collected at the credit facility level.

26 - Project nance loans typically do not carry pre-payment penalties and their re- nancing can often be described as being a part of the
lender/borrower relationship (see Blanc-Brude and Ismail, 2013b, for a discussion). However, institutional investors are attracted by infrastructure
debt in part because of its long maturities and are likely to require new loans to be more dif cult to re- nance.
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Table 3: SPE level data

Data type Description

Cash ows 1. Base case debt drawdown and service (principal and interest) in each period
for all debt facilities
2. Observed debt service cover ratio (DSCR) in each period
3. If known, cash ow available for debt service (CFADS) in each period
4. If known, expected and observed construction-related cash ows

Calendar items 1. Financial close date
2. Contract/concession duration
3. Debt maturity date (all facilities)

Risk factors 1. Revenue model
a. price: indexed & guaranteed, guaranteed or market price
b. volume: contracted (public or commercial), part contracted/ part merchant
(proportion) or merchant only

2. Input cost risk (including fuel, labour, technology)
a. Price (as above)
b. Volume (as above)

3. Construction risk
a. Construction phase: y/n
b. Single xed-price, xed-date EPC contract: y/n
c. Mega-structure: y/n (e.g. Messina Straight bridge)

4. Counter-party risk
a. Off-taker rating
b. Public or private

Other factors 1. Total initial senior debt, subordinated debt and equity investment, in the
relevant currency
2. Industrial sector (categories congruent with corporate bonds)
3. Country of borrower/issuer
4. Project capacity and units (e.g. million-vehicle km, number of hospital beds,
megawatts, &c.)

Table 4: Loan facility level data

Data type Description

Cash ows 1. Base case debt drawdown and service for individual debt facilities in each period,
by level of seniority.
2. Re nanced facility: y/n. In the event of pre-payment/re- nancing, the new base
case debt cash ows can replace initial ones in the database.

Pricing 1. Pricing type: xed rate or xed spread (over base rate)
2. Ex ante spread or rate in each period
3. Swapped benchmark rate: y/n

Covenants 1. Cash sweep: y/n (year)
2. DSCR oor: y/n (level)
3. CFADS/EDBIT conditions
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